Where I Started
The Foundation I Built My Career On
"As a Java developer, this is my world. I build systems that handle millions of transactions. I write deterministic, testable, debuggable code. I control the flow, I own the logic, I guarantee the outcome. This approach has powered enterprises for decades—and I'm damn good at it."
What I Built With This Foundation
Payment systems processing $50M daily
Order management handling 100K orders/hour
99.99% uptime for 5 years straight
Zero breaches, full SOC 2 compliance
What I Actually Manage
@Service
@Slf4j
public class QuoteOrchestrationService {
@Autowired private WebClient customerServiceClient;
@Autowired private WebClient pricingServiceClient;
@Autowired private WebClient inventoryServiceClient;
@Autowired private WebClient productServiceClient;
@Autowired private KafkaTemplate<String, QuoteEvent> kafkaTemplate;
@Autowired private CircuitBreakerRegistry circuitBreakerRegistry;
@Transactional
@CircuitBreaker(name = "quoteProcessing", fallbackMethod = "fallbackQuote")
@TimeLimiter(name = "quoteProcessing")
@Retry(name = "quoteProcessing", fallbackMethod = "fallbackQuote")
public Mono<QuoteResponse> processQuoteRequest(QuoteRequest request) {
log.info("Orchestrating quote request for customer: {}", request.getCustomerId());
// Step 1: Validate customer & get pricing tier
return customerServiceClient.get()
.uri("/api/customers/{id}/pricing-tier", request.getCustomerId())
.retrieve()
.bodyToMono(CustomerPricingTier.class)
.doOnError(e -> log.error("Customer service failed", e))
.retryWhen(Retry.backoff(3, Duration.ofMillis(500)))
// Step 2: Fetch product details and check inventory
.flatMap(pricingTier -> {
List<Mono<ProductDetails>> productMonos = request.getProductIds().stream()
.map(productId -> productServiceClient.get()
.uri("/api/products/{id}", productId)
.retrieve()
.bodyToMono(ProductDetails.class)
.zipWith(inventoryServiceClient.get()
.uri("/api/inventory/{id}/availability", productId)
.retrieve()
.bodyToMono(InventoryStatus.class))
.map(tuple -> enrichProductWithInventory(tuple.getT1(), tuple.getT2())))
.collect(Collectors.toList());
return Mono.zip(productMonos, products ->
Arrays.stream(products).map(p -> (ProductDetails) p).collect(Collectors.toList()))
.map(products -> new Tuple2<>(pricingTier, products));
})
// Step 3: Calculate dynamic pricing with business rules
.flatMap(tuple -> {
CustomerPricingTier tier = tuple.getT1();
List<ProductDetails> products = tuple.getT2();
PricingRequest pricingRequest = PricingRequest.builder()
.customerId(request.getCustomerId())
.pricingTier(tier)
.products(products)
.requestedQuantities(request.getQuantities())
.seasonalFactors(getSeasonalFactors())
.competitorPricing(getCompetitorPricing(products))
.build();
return pricingServiceClient.post()
.uri("/api/pricing/calculate")
.bodyValue(pricingRequest)
.retrieve()
.bodyToMono(PricingResponse.class)
.map(pricing -> buildQuoteResponse(request, tier, products, pricing));
})
// Step 4: Publish quote event for downstream systems
.doOnSuccess(quote -> {
QuoteEvent event = new QuoteEvent(quote.getQuoteId(), "QUOTE_GENERATED",
quote.getTotalAmount(), Instant.now());
kafkaTemplate.send("quote-events", event);
log.info("Published quote event: {}", quote.getQuoteId());
})
// Step 5: Comprehensive error handling
.doOnError(e -> {
log.error("Quote orchestration failed for request: {}", request.getId(), e);
sendAlertToOps("Quote processing failure", e);
});
}
// I wrote this. I understand every line. I control every outcome.
// But maintaining this across 23 services? That's the challenge.
}What makes me proud: Resilience patterns, reactive orchestration, distributed tracing, full observability
What keeps me up at night: 23 services × this complexity = maintenance burden, testing matrix, deployment coordination
"I've built my career on this foundation. But something is shifting..."